2-adic numbers, computing, and a problem for a 2-adic logarithm

We want to investigate the function $\mathrm{v}(\mathrm{n})$, defined as the exponent of 2 in the prime factorization of the rational number
$A _n=2^{\wedge} 1 / 1+2^{\wedge} 2 / 2+2^{\wedge} 3 / 3+\ldots+2^{\wedge} n / n$.
For example, A_3=2/1+4/2+8/3=4+8/3=20/3=2^2.3^\{-1\}.5, so v(3)=2, and $A_{-} 4=A _3+16 / 4=32 / 3=2^{\wedge} 5.3^{\wedge}\{-1\}$, so $v(4)=5$.

1. Show that $v\left(2^{\wedge} m-1\right)=2^{\wedge} m-m$;
2. Show that $\mathrm{v}(\mathrm{n})>=\mathrm{n}-[\log \mathrm{n}]$, where \log is the base- 2 logarithm and $[\mathrm{x}]$ is the largest integer $<=\mathrm{x}$.

3*. Find a good upper bound for $v(n)$.
4*. Show that for n large enough, $v(n)<=n+2[\log n]-2$, with equality if and only if n is a power of 2 .
$5^{\wedge *}$. Show that $v\left(2^{\wedge} m\right)=2^{\wedge} m+2(m-2)$ for $m>=4$.
The statements in problems 1 and 2 are known, but any other result would be new. We want to investigate problems 3,4 and 5 by computer experiments and by using a new expression for the numbers A_n.

These problems are related to 2 -adic numbers and the 2 -adic logarithm. Here, 2 -adic numbers arize from a distance notion where two numbers are close if the exponent of 2 in the prime factorization of their difference is large. As a warm-up, we will investigate how 2 -adic arithmetic is applied in compiler-writing. Then we will investigate the 2 -adic logarithm and work on these problems. We can also think of generalizations to other primes.

The topic is suitable both for a bachelor thesis and for a master thesis.
Some background in number theory would help but is not required. For a master-level thesis some knowledge of number theory, linear algebra and algebraic structures (groups, rings, fields, completion) is probably needed.

